

 Burt Beckwith

 INTRODUCTION TO THE SCHWARTZ PLUGIN

The Schwartz plugin integrates the Quartz Enterprize Job Scheduler﻿ with Grails, making it easy to schedule and manage recurring and ad-hoc jobs for asynchronous and synchronous processing.

The plugin is similar at a high level to the Quartz﻿ plugin in that it makes it easy to schedule Quartz Job﻿s and Trigger﻿s without having to deal directly with the Quartz API and mindset. But if you are used to working with Quartz directly you can continue to do so with this plugin - it provides convenience classes and Traits to make job scheduling easier, but you have a lot of flexibility in how you perform the various tasks.

In addition to this plugin documentation, be sure to familiarize yourself with the Quartz documentation﻿, in particular the Configuration Reference﻿, the Cookbook﻿, the Tutorials﻿, the Examples﻿, and Best Practices﻿.

[image: 20120815 145326]

Release History

	
July 12, 2016

	
1.0.0 release

 Burt Beckwith

 USAGE

Scheduling jobs in Quartz is generally done in two stages. Data about how to run your jobs (the class name and various configuration options including if the job is stateless, durable, etc.) is represented via an implementation of the JobDetail﻿ interface. But there is no scheduling information there; that’s handled by classes that implement the Trigger﻿ interface. A job may have just a single Trigger﻿ with a configured schedule for when it fires, or it could have multiple triggers each using different schedules and possibly trigger-specific configuration. Or there might not be any triggers at all; as long as the job is durable (Quartz deletes non-durable jobs without active triggers) you can register a JobDetail﻿ and manually trigger the job on-demand, from other triggers, from listeners, etc.

When a trigger fires, an application class must be available to do the work, and that’s handled by a class that you create in your application that implements the Job﻿ interface. Often job classes are instantiated for every invocation but this isn’t a requirement, and the plugin supports using Job﻿ classes registered as Spring beans. If you use a singleton Spring bean be be careful not to store job-related state in the bean instance unless it won’t cause problems across multiple invocations.

SchwartzJobFactory

The plugin includes an implementation of the Quartz JobFactory﻿ interface, SchwartzJobFactory﻿, which manages retrieving Spring bean instances when triggers fire for jobs registered as Spring beans, and instantiating new instances of POGO/POJO classes otherwise. It will also make “job data” from multiple sources available to the job classes when they’re executing.

Job data has three sources, the global values stored in the Scheduler﻿ SchedulerContext﻿, job-specific values from a JobDataMap﻿ configured for the JobDetail﻿, and trigger-specific JobDataMap﻿ instances configured for individual triggers. When you register the job in the scheduler you can include a JobDataMap﻿ with whatever information the job needs, or none if that isn’t needed. Likewise when scheduling triggers you can store trigger-specific data. The three sources are merged together when a trigger fires and your job instance is created or retrieved as a bean, with global values added first, then the job data, and then the trigger data. This means that job and trigger can both override values from the SchedulerContext﻿, and trigger values can override job values.

If you have setters or properties in your job class corresponding to keys in the merged data map, those values will be set for each invocation. This isn’t a requirement though, and you can always access all of the merged data from the JobExecutionContext﻿ instance that is provided for each execution (it’s the argument in the Job﻿ interface void execute(JobExecutionContext context)﻿ method that all jobs implement).

SchwartzJob

The plugin includes a trait, SchwartzJob﻿, which you can implement to take advantage of its default settings and configuration which will make creating, registering and managing JobDetail﻿ and Trigger﻿ instances a lot simpler. By implementing the trait, QuartzService﻿ can easily create a JobDetail﻿ instance using the implementation class as the jobClass﻿, and invoking the various getter methods defined in the trait. The initial return values have sensible default values, but you can override any of them by creating the same method in your implementation class with custom values.

The trait also implements the InterruptableJob﻿ interface and includes an empty interrupt()﻿ method that you can override for any job class that should perform some actions if they are interrupted.

Quartz requires that a Job﻿ that is stateful indicate that using two annotations, DisallowConcurrentExecution﻿ and PersistJobDataAfterExecution﻿. You can annotate your stateful job classes with these yourself, but the plugin includes another trait, StatefulSchwartzJob﻿, which simply extends SchwartzJob﻿ and includes these annotations. So you can just implement SchwartzJob﻿ or StatefulSchwartzJob﻿ as needed.

The trait has one abstract method, buildTriggers()﻿, which is invoked from afterPropertiesSet()﻿ which is called by the Spring ApplicationContext﻿ if your job is a Spring bean after dependencies have been injected (because the trait implements InitializingBean﻿). Create your job’s trigger(s) at this point and add them to the triggers﻿ list defined in the trait to have them auto-registered for you at startup. You can use the plugin’s builder support or the Quartz builders directly to create triggers. You don’t have to create any triggers though, and can just define an empty method; you can configure and schedule triggers yourself, or trigger jobs on-demand as needed.

Note that using these traits is not required - you can create (or reuse from non-Grails applications) job classes that implement the Job﻿ interface, and work directly with Quartz, creating and scheduling JobDetail﻿ and Trigger﻿ instances yourself. The traits and other helper classes are and are there to reduce the amount of manual configuration required. The plugin supports any implementation of the Job﻿ interface.

SchwartzJob method and property summary

	Method/Property﻿
	Description﻿

	QuartzService quartzService﻿

	Dependency injection property for the quartzService﻿ bean; only valid if the job class is a Spring bean (e.g. if it’s defined in grails-app/services﻿ or otherwise registered in Spring). For non-bean job classes the getQuartzService()﻿ method will retrieve the service from the ApplicationContext﻿ for you.

	String getJobName()﻿

	Defines the job name for the JobDetail﻿ that is registered for the class; the default value is the class name without the package

	String getJobGroup()﻿

	Defines the job group for the JobDetail﻿ that is registered for the class; the default is the Quartz default (“DEFAULT”)

	JobKey getJobKey()﻿

	Convenience method to create a JobKey﻿ with the values from getJobName()﻿ and getJobGroup()﻿

	String getDescription()﻿

	Defines the description for the JobDetail﻿ that is registered for the class; there is no default.

	boolean getSessionRequired()﻿

	If true﻿, a listener will be configured to start a GORM session before the job starts and flush and close it after it finishes (similar to the OpenSessionInView pattern used in controllers); defaults to true﻿

	boolean getDurable()﻿

	If true﻿ the job will remain registered even if there are no active triggers associated, otherwise the JobDetail﻿ will be deleted by Quartz; defaults to true﻿.

	boolean getRequestsRecovery()﻿

	If true﻿ jobs that are executing when the scheduler stops without being properly shut down (e.g. if the app crashes) will execute again at the next startup; defaults to false﻿.

	void interrupt()﻿

	This is defined in the InterruptableJob﻿ interface and can be overridden to add code that runs if the job is interrupted by a call to scheduler.interrupt()﻿; the default implementation is empty.

	void buildTriggers()﻿

	Abstract in the trait and must be implemented in application job classes. Provides a hook at startup for creating triggers that should be scheduled automatically. Can be empty if you prefer to schedule triggers yourself, or if you don’t need scheduled triggers and will trigger jobs on-demand.

	List<Trigger> triggers﻿

	Add triggers here in buildTriggers()﻿ to make them available for automatic scheduling.

	TriggerBuilder builder()﻿

	Creates a TriggerBuilder﻿ with the job name and group configured.

	TriggerBuilder builder(String triggerName)﻿

	Creates a TriggerBuilder﻿ with the job name and group configured, and with the specified trigger name set.

	BuilderFactory factory()﻿

	Creates a BuilderFactory﻿ with the job name and group configured.

	BuilderFactory factory(String triggerName)﻿

	Creates a BuilderFactory﻿ with the job name and group configured, and with the specified trigger name set.

	JobBuilder jobBuilder()﻿

	Creates a JobBuilder﻿ configured from current values from the class.

	void updateJobDetail()﻿

	Updates the data in the Scheduler for the class using values from the getter methods.

	void updateJobDetail(JobDetail jobDetail)﻿

	Updates the data in the Scheduler for the class using values from the JobDetail﻿.

	JobDetail getStoredJobDetail()﻿

	Retrieve the current stored job detail for the class.

	List<? extends Trigger> getStoredTriggers()﻿

	Retrieves all triggers registered for the class.

	Date schedule(Trigger trigger)﻿

	Adds or updates the trigger in the scheduler, returning the next fire time.

	void triggerJob()﻿

	Executes the job immediately.

	void triggerJob(Map jobData)﻿

	Executes the job immediately, with the specified job data available during execution.

	QuartzService getQuartzService()﻿

	Called implicitly for job classes that aren’t Spring beans to retrieve the service from the ApplicationContext﻿ to ensure that the service is available in methods that use it.

	void afterPropertiesSet()﻿

	This is defined in the InitializingBean﻿ interface and is called by the ApplicationContext﻿ at startup; calls buildTriggers()﻿ to let classes define triggers to be automatically scheduled.

 Burt Beckwith

 CONFIGURATION

Plugin config options

There are several configuration settings that you can set in the Grails config to customize various aspects of the plugin, and you can also specify Quartz configuration settings that will affect the configuration of the Scheduler, JobStore, etc.

All config options must be in the quartz﻿ block in application.groovy﻿ (or make the equivalent changes in application.yml﻿ if you haven’t converted it to Groovy syntax yet) but are shown here without the prefix.

	Property﻿
	Default Value﻿
	Meaning﻿

	quartz.autoStartup

	true﻿

	If false﻿ the plugin will do all of its initialization tasks when the application starts (configuring Spring beans, registering JobDetail﻿s and Trigger﻿s, validation tasks, data purging if configured, etc.) but doesn’t call quartzScheduler.start()﻿. This gives you a chance to do custom work after the plugin initializes but before starting the scheduler, or disabling the scheduler per-environment (e.g. in the test environment). You can manually start later by dependency injecting the Quartz scheduler bean (using Scheduler quartzScheduler﻿ or def quartzScheduler﻿) and calling quartzScheduler.start()﻿.

	quartz.clearQuartzDataOnStartup

	false﻿

	when true﻿, deletes job and trigger data from Quartz database tables (all tables except QRTZ_FIRED_TRIGGERS, QRTZ_LOCKS, and QRTZ_SCHEDULER_STATE, and filtered by scheduler name) on startup (only makes sense if jdbcStore=true)

	quartz.exposeSchedulerInRepository

	false﻿

	If true﻿ the Scheduler﻿ instance will be registered in the Quartz SchedulerRepository﻿.

	quartz.globalJobListenerNames

	'exceptionPrinterJobListener', 'loggingJobListener', 'progressTrackingListener'

	Names of Spring beans that implement the JobListener﻿ interface that should be registered with Quartz at startup as global listeners.

	quartz.globalTriggerListenerNames

	'loggingTriggerListener', 'progressTrackingListener'

	Names of Spring beans that implement the TriggerListener﻿ interface that should be registered with Quartz at startup as global listeners.

	quartz.jdbcStore

	false﻿

	If true﻿, enables storing job and trigger data in a database instead of in-memory with RAMJobStore.

	quartz.jdbcStoreDataSource

	none﻿

	Spring bean name of the DataSource﻿ bean to use with JDBC job storage, if the bean name isn’t “dataSource”.

	quartz.pluginEnabled

	true﻿

	If false﻿ nothing is configured, for example in the test environment so jobs aren’t firing during test execution.

	quartz.purgeQuartzTablesOnStartup

	false

	More aggressive than clearQuartzDataOnStartup﻿; if true﻿ all Quartz database tables are emptied at startup, bypassing Quartz APIs and simply running SQL queries to delete everything.

	quartz.schedulerListenerNames

	'loggingSchedulerListener'

	Names of Spring beans that implement the SchedulerListener﻿ interface that should be registered with Quartz at startup as global listeners.

	quartz.waitForJobsToCompleteOnShutdown

	false﻿

	Whether to wait for jobs to complete when the application is shutting down.

Quartz config options

In addition to the named config options above, the plugin generates a Properties﻿ instance with values that you would typically otherwise store in a quartz.properties﻿ file. Configuring the values in this way can be much more flexible, especially if you take advantage of Groovy syntax, and also has support for environments. Set the values in the properties﻿ block under in the root quartz﻿ block; when they’re read to populate the Properties﻿ instance they’re prefixed with "org.". This listing shows a fairly complete listing of the default settings for properties that are most likely to be configured. Since this mostly includes default values it doesn’t make much sense to copy this to your application’s config file - it’s here only as a reference.

Check out the Quartz configuration documentation﻿ for detailed information about what properties are available.

Listing 1. application.groovy﻿
import org.quartz.core.QuartzSchedulerResources
import org.quartz.impl.DefaultThreadExecutor
import org.quartz.impl.jdbcjobstore.StdJDBCDelegate
import org.quartz.simpl.SimpleInstanceIdGenerator
import org.quartz.simpl.SimpleThreadPool

quartz {
 autoStartup = true
 clearQuartzDataOnStartup = false
 exposeSchedulerInRepository = false
 jdbcStore = false
 jdbcStoreDataSource = 'dataSource'
 purgeQuartzTablesOnStartup = false
 startupDelay = 0
 waitForJobsToCompleteOnShutdown = false

 properties {
 // RAMJobStore
 jobStore {
 misfireThreshold = 60000
 }
 // JDBC
 /*
 jobStore {
 acquireTriggersWithinLock = false // should be true if
 // batchTriggerAcquisitionMaxCount > 1
 clusterCheckinInterval = 7500
 dontSetAutoCommitFalse = false
 dontSetNonManagedTXConnectionAutoCommitFalse = false
 driverDelegateClass = StdJDBCDelegate.name
 driverDelegateInitString = null
 isClustered = false
 lockHandler.class = null // if null Quartz will determine which to use
 maxMisfiresToHandleAtATime = 20
 misfireThreshold = 60000
 selectWithLockSQL = 'SELECT * FROM {0}LOCKS WHERE SCHED_NAME = {1}' +
 ' AND LOCK_NAME = ? FOR UPDATE'
 tablePrefix = 'QRTZ_'
 txIsolationLevelReadCommitted = false
 txIsolationLevelSerializable = false
 useProperties = false
 }
 */
 managementRESTService {
 bind = '0.0.0.0:9889'
 enabled = false
 }
 scheduler {
 batchTriggerAcquisitionFireAheadTimeWindow = 0
 batchTriggerAcquisitionMaxCount = 1
 classLoadHelper.class = null // Quartz default is CascadingClassLoadHelper but
 // Spring's SchedulerFactoryBean configures a
 // ResourceLoaderClassLoadHelper if no value is set
 dbFailureRetryInterval = 15000
 idleWaitTime = 30000
 instanceId = 'NON_CLUSTERED'
 instanceIdGenerator.class = SimpleInstanceIdGenerator.name
 instanceName = 'QuartzScheduler'
 interruptJobsOnShutdown = false
 interruptJobsOnShutdownWithWait = false
 jmx {
 export = true // default is false
 objectName = null // if null Quartz will generate with
 // QuartzSchedulerResources.generateJMXObjectName()
 proxy = false
 proxy.class = null
 }
 makeSchedulerThreadDaemon = false
 rmi {
 bindName = null // if null Quartz will generate with
 // QuartzSchedulerResources.getUniqueIdentifier()
 createRegistry = QuartzSchedulerResources.CREATE_REGISTRY_NEVER // 'never'
 export = false
 proxy = false
 registryHost = 'localhost'
 registryPort = 1099
 serverPort = -1 // random
 }
 skipUpdateCheck = true
 threadName = instanceName + '_QuartzSchedulerThread'
 threadsInheritContextClassLoaderOfInitializer = false
 userTransactionURL = null
 wrapJobExecutionInUserTransaction = false
 }
 threadExecutor.class = DefaultThreadExecutor.name
 threadPool.class = SimpleThreadPool.name
 threadPool {
 makeThreadsDaemons = false
 threadCount = 10
 threadPriority = Thread.NORM_PRIORITY // 5
 threadsInheritContextClassLoaderOfInitializingThread = false
 threadsInheritGroupOfInitializingThread = true
 }
 }
}

 Burt Beckwith

 COMPARISON WITH THE QUARTZ PLUGIN

The two plugins are similar in many ways, but significantly different in others. Both make it easy to create a simple class that is conveniently registered with Quartz as a JobDetail﻿ and optionally some triggers.

The Quartz plugin abstracts away some of the details with the expectation that this makes the process simpler. I’ve found the opposite however; for the small number of keystrokes saved the abstractions used add layers of dynamic Groovy code that add little value, slow down execution (admittedly not significantly), and make working with Quartz more confusing in some cases.

Using Quartz outside of Grails in a regular Java project isn’t particularly complex. You just have to create a class for each job and implement the org.quartz.Job﻿ interface which has a single method, execute﻿ with a single argument, a JobExecutionContext﻿, for example:

import org.quartz.Job;
import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException;

public class MyJob implements Job {
 public void execute(JobExecutionContext context) throws JobExecutionException {
 // your code here
 }
}

The Quartz plugin doesn’t require that your job classes implement Job﻿ or any interface, but simply have an execute﻿ method. It can take a JobExecutionContext﻿ argument if you have a need for it, or can be a no-arg method if not, and there is no mention of JobExecutionException﻿ anywhere in the documentation. A job can be (and typically is) implemented as simply as

class MyJob {

 def execute() {
 // your code here
 }
}

This certainly seems better, using a pattern that’s common in Grails and Groovy apps where Groovy and/or the framework reduce boilerplate code and let you focus on solving the problem at hand, in this case performing some actions when a trigger fires for your job. Internally the plugin has a single class that implements Job﻿ (and a similar second class for stateful jobs) which is the actual class registered in Quartz as the implementation class for the job. Your application’s job classes are registered as Spring beans, and the bean name is stored with the JobDetail﻿, and when a trigger fires, the execute()﻿ method is invoked in the plugin’s job class, and your application’s job bean is retrieved from Spring to do the actual job processing work. The execute()﻿ method and whether it has a JobExecutionContext﻿ argument are looked up once using reflection at startup, and then invoked with reflection each time a trigger fires, with handling for InvocationTargetException﻿ and IllegalAccessException﻿ that’s necessary because the method is dynamically invoked.

There some other hidden costs also. In addition to the execute()﻿ method, you define triggers for your job using the plugin’s custom DSL in a static Closure:

class MyJob {

 static triggers = {
 simple name:'simpleTrigger', startDelay: ...
 }

 def execute() {
 // your code here
 }
}

Having a closure like that in the class means you cannot use the CompileStatic﻿ annotation at the class level, only per-method. This is a small difference and there wouldn’t be much gained if the trigger definition code was statically compiled, but in practice there tends to be little use of CompileStatic﻿ at all. I now use CompileStatic﻿ wherever I can, because of the performance boost but also because it makes writing code much faster because IDEs have a lot more information available for use with autocomplete and other inferencing features. My opinion is that plugins should be encouraging and enabling more﻿ use of static compilation, not implicitly discouraging it.

Hopefully your jobs will always run without errors, but exceptions occur and by ignoring the possibility that a JobExecutionException﻿ might be thrown during job execution also has a runtime cost. This is a checked exception, which Groovy doesn’t require us to deal with. But it implements that by wrapping checked exceptions in an UndeclaredThrowableException﻿, and unwrapping them before they’re actually handled. This also affects the majority of the methods in grails.plugins.quartz.QuartzJob﻿ and grails.plugins.quartz.JobManagerService﻿, specifically the methods that call Quartz Scheduler﻿ methods, most of which can throw JobExecutionException﻿. Exceptions in Groovy are already slow and expensive and having a feature in a plugin that adds processing and overhead only makes the problem worse.

None of these costs are particularly bad, and in general performance is likely not noticeably different from the more verbose implementation in Java. But if a lot of work is being done in your Quartz jobs, or if they fire often, these costs can certainly add up. This could easily be shrugged off as a non-issue if the implementation savings was significant, but all we gained was the ability to omit the execute()﻿ method argument, omit the implements Job﻿ declaration, and omit the JobExecutionException﻿. That’s a negligible savings (literally a few dozen keystrokes at best), especially given the potential costs.

Building triggers

Triggers are defined statically in the Quartz plugin in a triggers﻿ closure in each job class, using the plugin’s trigger DSL. Only “simple” and “cron” triggers are directly supported, but you can configure any trigger type by specifying the class and all of the trigger properties as name/value pairs. The DSL is fairly limited and there is no autocompletion.

With Schwartz you also can define triggers in the job class, typically in the buildTriggers()﻿ method in job classes that implement SchwartzJob﻿ or StatefulSchwartzJob﻿. There is no DSL, but instead you define triggers programmatically. As you can see from the examples throughout the documentation, using the Quartz builder classes added in Quartz 2.0, or the plugin’s BuilderFactory﻿ which aggregates the logic for all of the Quartz builders into one builder, the programmatic approach feels a lot like using a DSL but with the added benefit of having immediate feedback about available options and syntax when coding in an IDE. You can create different triggers or use different settings depending on the current Environment﻿, get access to the Config﻿, and use any Spring bean, Grails service, etc. as needed, and the QuartzService﻿ is available inside all SchwartzJob﻿ classes. You can also create instances of the “Impl” classes directly and set properties there, for example if you already have working existing code, but this approach shouldn’t be used in general.

You can additionally create triggers outside of your job classes and schedule them on-demand, using the Quartz Scheduler﻿ or helper methods in QuartzService﻿.

Differences in default values

When building triggers, if no value is specified the Quartz plugin defaults to a 60,000 millisecond (one minute) repeat interval, “GRAILS_JOBS” for the job group name, “GRAILS_TRIGGERS” for the trigger group name, “Grails Job” for the job description, and, inexplicably, “0 0 6 * * ?” for the CRON expression. This plugin has no defaults for these properties (other than the job and trigger names, which default to the Quartz default value of “DEFAULT” for both).

Another difference is trigger priority; triggers created in grails.plugins.quartz.TriggerUtils﻿ default to a priority value of 6 (one larger than the default value of 5, presumably as an homage to Spinal Tap).

The two plugins have the same default values for start delay (0), repeat count (repeat forever), session required (true﻿), durability (true﻿), and recovery requested (false﻿).

Migrating from the Quartz plugin

Migrating config settings

The Quartz plugin’s config settings (quartz.autoStartup﻿, quartz.exposeSchedulerInRepository﻿, quartz.jdbcStore﻿, quartz.jdbcStoreDataSource﻿, quartz.pluginEnabled﻿, quartz.purgeQuartzTablesOnStartup﻿, and quartz.waitForJobsToCompleteOnShutdown﻿) are all also used in this plugin and have the same default values, so there shouldn’t be any changes required there.

Migrating job classes

Quartz plugin jobs are not directly usable in the Schwartz plugin but are easily converted. The Quartz plugin includes an artifact handler that lets you (technically it requires that you) define job classes under grails-app/jobs﻿. Schwartz jobs are not artifacts by default and have no dedicated class location.

The first thing to do for each job is to decide if it should be a Grails Service or not. This is optional but if your job writes to the database it should be transactional or use transactional services to do that work, and if it makes sense to do that work transactionally inside the job class then a Service is a good option.

Run the [create-job]﻿ script for each existing Quartz plugin job, and add the --pogo﻿ flag to generate the class under src/main/groovy﻿, or omit the flag to generate a Service; if your Quartz plugin job is a stateful job (somewhat confusingly referred to as a non-concurrent job in the Quartz plugin docs, since concurrency is only one aspect of a stateful job) then include the --stateful﻿ flag, or omit it to make the generated class a stateless job:

$ grails create-job <classname>

$ grails create-job <classname> --pogo

$ grails create-job <classname> --stateful

$ grails create-job <classname> --pogo --stateful

Both plugins have the same defaults for durability, session required, requests recovery, so if you had overridden any of those, do the same in your SchwarzJob﻿ class by overridding the corresponding method from the trait, e.g.

boolean getSessionRequired() { false }

Also add a method override for the description, job name, and job group as needed.

Migrating triggers

Convert triggers defined using the Quartz plugin DSL with plugins triggers defined using this plugin’s BuilderFactory﻿ (either directly or by using one of the factory()﻿ methods defined in SchwartzJob﻿) or using the Quartz builders (either directly or by using one of the builder()﻿ methods defined in SchwartzJob﻿). Define these in the buildTriggers()﻿ method and add the trigger instances to the triggers﻿ list, e.g.

import static com.agileorbit.schwartz.builder.MisfireHandling.NowWithExistingCount
import static org.quartz.DateBuilder.todayAt

void buildTriggers() {
 triggers << factory('cron every second').cronSchedule('0/1 * * * * ?').build()

 triggers << factory('Repeat3TimesEvery100').intervalInMillis(100).repeatCount(3).build()

 triggers << factory('repeat every 500ms forever').intervalInMillis(500).build()

 triggers << factory('repeat every two days forever').intervalInDays(2).build()

 triggers << factory('trigger1')
 .intervalInMillis(100)
 .startDelay(2000).noRepeat()
 .jobData(foo: 'bar').build()

 triggers << factory('run_once_immediately').noRepeat().build()

 triggers << factory('MisfireTrigger2')
 .intervalInMillis(150)
 .misfireHandling(NowWithExistingCount)
 .build()

 triggers << factory('trigger1').group('group1').intervalInSeconds(1).build()

 triggers << factory('run every day one second before midnight')
 .startAt(todayAt(23,59,59))
 .intervalInDays(1).build()

 triggers << factory('run every day at 11:00 AM')
 .startAt(todayAt(11,00,00).before(new Date()) ? tomorrowAt(11,00,00) : todayAt(11,00,00))
 .intervalInDays(1).build()
}

 Burt Beckwith

 TRIGGERS

Quartz includes four interfaces that extend the core Trigger﻿ interface; CalendarIntervalTrigger﻿, CronTrigger﻿, DailyTimeIntervalTrigger﻿, and SimpleTrigger﻿. Each has a default implementation (CalendarIntervalTriggerImpl﻿, CronTriggerImpl﻿, DailyTimeIntervalTriggerImpl﻿, and SimpleTriggerImpl﻿) and you can directly instantiate them and configure their properties yourself. They all include a few parameterized constructors but these constructors and this approach in general are deprecated in favor of using their builder classes.

The builders support a fluent API with method chaining by returning this﻿ from mutator methods, and you end up with readable and intuitive code to define triggers, and IDE autocompletion also greatly helps with quickly configuring settings. These include the 'core' builder TriggerBuilder﻿ and a scheduler builder that handles the schedule-related configuration for each different trigger type (CalendarIntervalScheduleBuilder﻿, CronScheduleBuilder﻿, DailyTimeIntervalScheduleBuilder﻿, and SimpleScheduleBuilder﻿). DateBuilder﻿ is also available and has a large number of methods that help with working with dates so you don’t have to work with the frustrating Java date apis. Using these builders also tends to help avoid making invalid combinations of settings, but that’s still possible of course.

Using builders to create triggers

The general flow for creating any of the four types of triggers is to start with a call to the static TriggerBuilder.newTrigger()﻿ method to create the initial TriggerBuilder﻿ instance, and then call the various instance methods to configure job detail properties and common schedule-related properties, e.g.

TriggerBuilder.newTrigger()
 .forJob('some job name')
 .withPriority(3)

Using static imports can help a lot to compact your builder code, e.g.

import static org.quartz.TriggerBuilder.newTrigger

newTrigger()
 .forJob('some job name')
 .withPriority(3)

The instance methods are designed to be chained and all mutator methods return this﻿ instead of being void﻿; this isn’t required but is the preferred way to work with the builders, so all of the examples will use this approach. At some point in the method call chain you can join in a schedule builder with a call to withSchedule()﻿, e.g.

import static org.quartz.CronScheduleBuilder.dailyAtHourAndMinute
import static org.quartz.TriggerBuilder.newTrigger

newTrigger()
 .forJob('some job name')
 .withPriority(3)
 .withSchedule(dailyAtHourAndMinute(2, 30))

The schedule builders have one or more static methods that are used to create an instance with all of the initial properties required for the particular schedule pattern. In this example I used a method that will implicitly generate a CRON expression using the three properties I provided (daily repeat, repeat hour, and repeat minute) but I could have used a different initializing method for weekly repeating, monthly, etc., or the simplest option, providing a CRON expression directly:

import static org.quartz.CronScheduleBuilder.cronSchedule
import static org.quartz.TriggerBuilder.newTrigger

newTrigger()
 .forJob('some job name')
 .withPriority(3)
 .withSchedule(cronSchedule('0 15 10 * * ?'))
 .build()

Once everything is configured, call build()﻿ to instantiate and configure the trigger type associated with the schedule builder you used:

import org.quartz.CronTrigger

import static org.quartz.CronScheduleBuilder.dailyAtHourAndMinute
import static org.quartz.TriggerBuilder.newTrigger

CronTrigger cronTrigger = newTrigger()
 .forJob('some job name')
 .withPriority(3)
 .withSchedule(dailyAtHourAndMinute(2, 30))
 .build()

The builders use generics, so in the example above no cast is needed even if your code is annotated with @CompileStatic﻿.

The following sections describe the various initial static methods and subsequent instance methods for each of the builders

CalendarIntervalScheduleBuilder

Method Summary

Listing 1. Listing 1. CalendarIntervalScheduleBuilder static methods
static CalendarIntervalScheduleBuilder calendarIntervalSchedule()

Listing 2. Listing 2. CalendarIntervalScheduleBuilder instance methods
// interval, IntervalUnit

CalendarIntervalScheduleBuilder withInterval(int interval, IntervalUnit unit)
CalendarIntervalScheduleBuilder withIntervalInDays(int intervalInDays)
CalendarIntervalScheduleBuilder withIntervalInHours(int intervalInHours)
CalendarIntervalScheduleBuilder withIntervalInMinutes(int intervalInMinutes)
CalendarIntervalScheduleBuilder withIntervalInMonths(int intervalInMonths)
CalendarIntervalScheduleBuilder withIntervalInSeconds(int intervalInSeconds)
CalendarIntervalScheduleBuilder withIntervalInWeeks(int intervalInWeeks)
CalendarIntervalScheduleBuilder withIntervalInYears(int intervalInYears)

// misfireInstruction

CalendarIntervalScheduleBuilder withMisfireHandlingInstructionIgnoreMisfires()
CalendarIntervalScheduleBuilder withMisfireHandlingInstructionDoNothing()
CalendarIntervalScheduleBuilder withMisfireHandlingInstructionFireAndProceed()

// TimeZone

CalendarIntervalScheduleBuilder inTimeZone(TimeZone timezone)

// preserveHourOfDayAcrossDaylightSavings

CalendarIntervalScheduleBuilder preserveHourOfDayAcrossDaylightSavings(boolean preserveHourOfDay)

// skipDayIfHourDoesNotExist
CalendarIntervalScheduleBuilder skipDayIfHourDoesNotExist(boolean skipDay)

Table 1. Corresponding BuilderFactory methods/properties

	Builder method﻿
	BuilderFactory methods/properties﻿

	static calendarIntervalSchedule﻿

	N/A, this is always called because it’s the only static builder method

	withInterval﻿

	interval﻿, unit﻿

	withIntervalInMinutes﻿

	intervalInMinutes﻿

	withIntervalInHours﻿

	intervalInHours﻿

	withIntervalInDays﻿

	intervalInDays﻿

	withIntervalInWeeks﻿

	intervalInWeeks﻿

	withIntervalInMonths﻿

	intervalInMonths﻿

	withIntervalInYears﻿

	intervalInYears﻿

	withMisfireHandlingInstructionIgnoreMisfires﻿

	misfireHandling(IgnoreMisfires)﻿

	withMisfireHandlingInstructionDoNothing﻿

	misfireHandling(DoNothing)﻿

	withMisfireHandlingInstructionFireAndProceed﻿

	misfireHandling(FireAndProceed)﻿

	preserveHourOfDayAcrossDaylightSavings﻿

	preserveHourOfDay()﻿

	skipDayIfHourDoesNotExist﻿

	skipDay﻿

Use these static imports when using these BuilderFactory﻿ methods:

grails.plugin.schwartz.builder.MisfireHandling.*
org.quartz.DateBuilder.IntervalUnit.*

CronScheduleBuilder

Method Summary

Listing 3. Listing 3. CronScheduleBuilder static methods
static CronScheduleBuilder atHourAndMinuteOnGivenDaysOfWeek(int hour, int minute, Integer... daysOfWeek)
static CronScheduleBuilder cronSchedule(CronExpression cronExpression)
static CronScheduleBuilder cronSchedule(String cronExpression)
static CronScheduleBuilder cronScheduleNonvalidatedExpression(String cronExpression)
static CronScheduleBuilder dailyAtHourAndMinute(int hour, int minute)
static CronScheduleBuilder monthlyOnDayAndHourAndMinute(int dayOfMonth, int hour, int minute)
static CronScheduleBuilder weeklyOnDayAndHourAndMinute(int dayOfWeek, int hour, int minute)

Listing 4. Listing 4. CronScheduleBuilder instance methods
// timeZone

CronScheduleBuilder inTimeZone(TimeZone timezone)

// misfireInstruction

CronScheduleBuilder withMisfireHandlingInstructionIgnoreMisfires()
CronScheduleBuilder withMisfireHandlingInstructionDoNothing()
CronScheduleBuilder withMisfireHandlingInstructionFireAndProceed()

Table 2. Corresponding BuilderFactory methods/properties

	Builder method﻿
	BuilderFactory methods/properties﻿

	static cronSchedule(String)﻿

	cronSchedule﻿

	static cronScheduleNonvalidatedExpression﻿

	cronScheduleNonvalidated﻿

	static cronSchedule(CronExpression)﻿

	cronExpression﻿

	static dailyAtHourAndMinute﻿

	hourAndMinuteMode(DailyAt), hour, minute﻿

	static atHourAndMinuteOnGivenDaysOfWeek﻿

	hourAndMinuteMode(DaysOfWeek), hour, minute, days﻿

	static weeklyOnDayAndHourAndMinute﻿

	hourAndMinuteMode(Weekly), day, hour, minute﻿

	static monthlyOnDayAndHourAndMinute﻿

	hourAndMinuteMode(Monthly), day, hour, minute﻿

	inTimeZone﻿

	timeZone﻿

	withMisfireHandlingInstructionIgnoreMisfires﻿

	misfireHandling(IgnoreMisfires)﻿

	withMisfireHandlingInstructionDoNothing﻿

	misfireHandling(DoNothing)﻿

	withMisfireHandlingInstructionFireAndProceed﻿

	misfireHandling(FireAndProceed)﻿

Use these static imports when using these BuilderFactory﻿ methods:

grails.plugin.schwartz.builder.HourAndMinuteMode.*
grails.plugin.schwartz.builder.MisfireHandling.*
org.quartz.DateBuilder.SUNDAY
org.quartz.DateBuilder.MONDAY
...
org.quartz.DateBuilder.SATURDAY

DailyTimeIntervalScheduleBuilder

Method Summary

Listing 5. Listing 5. DailyTimeIntervalScheduleBuilder static methods
static DailyTimeIntervalScheduleBuilder dailyTimeIntervalSchedule()

Listing 6. Listing 6. DailyTimeIntervalScheduleBuilder instance methods
// interval

DailyTimeIntervalScheduleBuilder withInterval(int interval, IntervalUnit unit)
DailyTimeIntervalScheduleBuilder withIntervalInHours(int intervalInHours)
DailyTimeIntervalScheduleBuilder withIntervalInMinutes(int intervalInMinutes)
DailyTimeIntervalScheduleBuilder withIntervalInSeconds(int intervalInSeconds)

// IntervalUnit

DailyTimeIntervalScheduleBuilder withInterval(int interval, IntervalUnit unit)

// daysOfWeek

DailyTimeIntervalScheduleBuilder onDaysOfTheWeek(Integer ... onDaysOfWeek)
DailyTimeIntervalScheduleBuilder onDaysOfTheWeek(Set<Integer> onDaysOfWeek)
DailyTimeIntervalScheduleBuilder onEveryDay()
DailyTimeIntervalScheduleBuilder onMondayThroughFriday()
DailyTimeIntervalScheduleBuilder onSaturdayAndSunday()

// startTimeOfDay

DailyTimeIntervalScheduleBuilder startingDailyAt(TimeOfDay timeOfDay)

// endTimeOfDay

DailyTimeIntervalScheduleBuilder endingDailyAfterCount(int count)
DailyTimeIntervalScheduleBuilder endingDailyAt(TimeOfDay timeOfDay)

// repeatCount

DailyTimeIntervalScheduleBuilder withRepeatCount(int repeatCount)

// misfireInstruction

DailyTimeIntervalScheduleBuilder withMisfireHandlingInstructionDoNothing()
DailyTimeIntervalScheduleBuilder withMisfireHandlingInstructionFireAndProceed()
DailyTimeIntervalScheduleBuilder withMisfireHandlingInstructionIgnoreMisfires()

Table 3. Corresponding BuilderFactory methods/properties

	Builder method﻿
	BuilderFactory methods/properties﻿

	static dailyTimeIntervalSchedule﻿

	N/A, this is always called because it’s the only static builder method

	withInterval﻿

	interval, unit﻿

	withIntervalInSeconds﻿

	intervalInSeconds﻿

	withIntervalInMinutes﻿

	intervalInMinutes﻿

	withIntervalInHours﻿

	intervalInHours﻿

	onDaysOfTheWeek(Set<Integer>)﻿

	not used; Collections and single ints are converted to Integer[]﻿

	onDaysOfTheWeek(Integer …​)﻿

	days﻿

	onMondayThroughFriday﻿

	mondayThroughFriday()﻿

	onSaturdayAndSunday﻿

	saturdayAndSunday()﻿

	onEveryDay﻿

	everyDay()﻿

	startingDailyAt﻿

	dailyStart﻿

	endingDailyAt﻿

	dailyEnd﻿

	endingDailyAfterCount﻿

	dailyEndAfterCount﻿

	withMisfireHandlingInstructionIgnoreMisfires﻿

	misfireHandling(IgnoreMisfires)﻿

	withMisfireHandlingInstructionDoNothing﻿

	misfireHandling(DoNothing)﻿

	withMisfireHandlingInstructionFireAndProceed﻿

	misfireHandling(FireAndProceed)﻿

	withRepeatCount﻿

	repeatCount﻿

Use these static imports when using these BuilderFactory﻿ methods:

grails.plugin.schwartz.builder.MisfireHandling.*

SimpleScheduleBuilder

Method Summary

Listing 7. Listing 7. SimpleScheduleBuilder static methods
static SimpleScheduleBuilder repeatHourlyForever()
static SimpleScheduleBuilder repeatHourlyForever(int hours)
static SimpleScheduleBuilder repeatHourlyForTotalCount(int count)
static SimpleScheduleBuilder repeatHourlyForTotalCount(int count, int hours)
static SimpleScheduleBuilder repeatMinutelyForever()
static SimpleScheduleBuilder repeatMinutelyForever(int minutes)
static SimpleScheduleBuilder repeatMinutelyForTotalCount(int count)
static SimpleScheduleBuilder repeatMinutelyForTotalCount(int count, int minutes)
static SimpleScheduleBuilder repeatSecondlyForever()
static SimpleScheduleBuilder repeatSecondlyForever(int seconds)
static SimpleScheduleBuilder repeatSecondlyForTotalCount(int count)
static SimpleScheduleBuilder repeatSecondlyForTotalCount(int count, int seconds)
static SimpleScheduleBuilder simpleSchedule()

Listing 8. Listing 8. SimpleScheduleBuilder instance methods
// interval

SimpleScheduleBuilder withIntervalInHours(int intervalInHours)
SimpleScheduleBuilder withIntervalInMilliseconds(long intervalInMillis)
SimpleScheduleBuilder withIntervalInMinutes(int intervalInMinutes)
SimpleScheduleBuilder withIntervalInSeconds(int intervalInSeconds)

// repeatCount

SimpleScheduleBuilder repeatForever()
SimpleScheduleBuilder withRepeatCount(int triggerRepeatCount)

// misfireInstruction

SimpleScheduleBuilder withMisfireHandlingInstructionFireNow()
SimpleScheduleBuilder withMisfireHandlingInstructionIgnoreMisfires()
SimpleScheduleBuilder withMisfireHandlingInstructionNextWithExistingCount()
SimpleScheduleBuilder withMisfireHandlingInstructionNextWithRemainingCount()
SimpleScheduleBuilder withMisfireHandlingInstructionNowWithExistingCount()
SimpleScheduleBuilder withMisfireHandlingInstructionNowWithRemainingCount()

Table 4. Corresponding BuilderFactory methods/properties

	Builder method﻿
	BuilderFactory methods/properties﻿

	static simpleSchedule﻿

	called if RepeatMode isn’t specified﻿

	static repeatMinutelyForever﻿

	repeatMode(Minutes), repeatForever()﻿

	static repeatMinutelyForever(minutes)﻿

	repeatMode(Minutes), repeatForever(), minutes﻿

	static repeatSecondlyForever﻿

	repeatMode(Seconds), repeatForever()﻿

	static repeatSecondlyForever(seconds)﻿

	repeatMode(Seconds), repeatForever(), seconds﻿

	static repeatHourlyForever﻿

	repeatMode(Hours), repeatForever()﻿

	static repeatHourlyForever(hours)﻿

	repeatMode(Hours), repeatForever(), hours﻿

	static repeatMinutelyForTotalCount(count)﻿

	repeatMode(Minutes), totalCount﻿

	static repeatMinutelyForTotalCount(count, minutes)﻿

	repeatMode(Minutes), totalCount, minutes﻿

	static repeatSecondlyForTotalCount(count)﻿

	repeatMode(Seconds), totalCount﻿

	static repeatSecondlyForTotalCount(count, seconds)﻿

	repeatMode(Seconds), totalCount, seconds﻿

	static repeatHourlyForTotalCount(count)﻿

	repeatMode(Hours), totalCount﻿

	static repeatHourlyForTotalCount(count, hours)﻿

	repeatMode(Hours), totalCount, hours﻿

	withIntervalInMilliseconds﻿

	intervalInMillis﻿

	withIntervalInSeconds﻿

	intervalInSeconds﻿

	withIntervalInMinutes﻿

	intervalInMinutes﻿

	withIntervalInHours﻿

	intervalInHours﻿

	withRepeatCount﻿

	repeatCount﻿

	repeatForever﻿

	repeatForever() (or omit since it’s the default)﻿

	withMisfireHandlingInstructionIgnoreMisfires﻿

	simpleMisfireHandling(IgnoreMisfires)﻿

	withMisfireHandlingInstructionFireNow﻿

	simpleMisfireHandling(FireNow)﻿

	withMisfireHandlingInstructionNextWithExistingCount﻿

	simpleMisfireHandling(NextWithExistingCount)﻿

	withMisfireHandlingInstructionNextWithRemainingCount﻿

	simpleMisfireHandling(NextWithRemainingCount)﻿

	withMisfireHandlingInstructionNowWithExistingCount﻿

	simpleMisfireHandling(NowWithExistingCount)﻿

	withMisfireHandlingInstructionNowWithRemainingCount﻿

	simpleMisfireHandling(NowWithRemainingCount)﻿

Use these static imports when using these BuilderFactory﻿ methods:

grails.plugin.schwartz.builder.SimpleMisfireHandling.*
grails.plugin.schwartz.builder.RepeatMode.*

TriggerBuilder

Method Summary

Listing 9. Listing 9. TriggerBuilder static methods
static TriggerBuilder<Trigger> newTrigger()

Listing 10. Listing 10. TriggerBuilder instance methods
// TriggerKey

TriggerBuilder<T> withIdentity(String name)
TriggerBuilder<T> withIdentity(String name, String group)
TriggerBuilder<T> withIdentity(TriggerKey triggerKey)

// description

TriggerBuilder<T> withDescription(String triggerDescription)

// priority

TriggerBuilder<T> withPriority(int triggerPriority)

// calendarName

TriggerBuilder<T> modifiedByCalendar(String calName)

// startTime

TriggerBuilder<T> startAt(Date triggerStartTime)
TriggerBuilder<T> startNow()

// endTime

TriggerBuilder<T> endAt(Date triggerEndTime)

// scheduleBuilder

<SBT extends T> TriggerBuilder<SBT> withSchedule(ScheduleBuilder<SBT> schedBuilder)

// JobKey

TriggerBuilder<T> forJob(JobDetail jobDetail)
TriggerBuilder<T> forJob(JobKey keyOfJobToFire)
TriggerBuilder<T> forJob(String jobName)
TriggerBuilder<T> forJob(String jobName, String jobGroup)

// JobDataMap

TriggerBuilder<T> usingJobData(JobDataMap newJobDataMap)
TriggerBuilder<T> usingJobData(String dataKey, Boolean value)
TriggerBuilder<T> usingJobData(String dataKey, Double value)
TriggerBuilder<T> usingJobData(String dataKey, Float value)
TriggerBuilder<T> usingJobData(String dataKey, Integer value)
TriggerBuilder<T> usingJobData(String dataKey, Long value)
TriggerBuilder<T> usingJobData(String dataKey, String value)

Table 5. Corresponding BuilderFactory methods/properties

	Builder method﻿
	BuilderFactory methods/properties﻿

	static newTrigger﻿

	N/A, this is always called because it’s the only static builder method

	withIdentity(name)﻿

	name﻿

	withIdentity(name, group)﻿

	name, group﻿

	withIdentity(TriggerKey)﻿

	triggerKey﻿

	withDescription﻿

	description﻿

	withPriority﻿

	priority﻿

	modifiedByCalendar﻿

	calendarName﻿

	startAt﻿

	startAt﻿

	startNow﻿

	startNow()﻿ (or omit since it’s the default)

	endAt﻿

	endAt﻿

	withSchedule﻿

	N/A﻿

	forJob(JobKey)﻿

	jobKey﻿

	forJob(jobName)﻿

	jobName﻿

	forJob(jobName, jobGroup)﻿

	jobName, jobGroup﻿

	forJob(JobDetail)﻿

	jobDetail﻿

	usingJobData(String, String)﻿

	none, use jobData Map﻿

	usingJobData(String, Integer)﻿

	none, use jobData Map﻿

	usingJobData(String, Long)﻿

	none, use jobData Map﻿

	usingJobData(String, Float)﻿

	none, use jobData Map﻿

	usingJobData(String, Double)﻿

	none, use jobData Map﻿

	usingJobData(String, Boolean)﻿

	none, use jobData Map﻿

	usingJobData(JobDataMap)﻿

	jobDataMap﻿

DateBuilder

Method Summary

Listing 11. Listing 11. DateBuilder static methods
static DateBuilder newDate()
static DateBuilder newDateInTimezone(TimeZone tz)
static DateBuilder newDateInLocale(Locale lc)
static DateBuilder newDateInTimeZoneAndLocale(TimeZone tz, Locale lc)

Listing 12. Listing 12. DateBuilder instance methods
// TimeZone

DateBuilder inTimeZone(TimeZone timezone)

// Locale

DateBuilder inLocale(Locale locale)

// month

DateBuilder inMonth(int inMonth)
DateBuilder inMonthOnDay(int inMonth, int onDay)

// day

DateBuilder onDay(int onDay)
DateBuilder inMonthOnDay(int inMonth, int onDay)

// year

DateBuilder inYear(int inYear)

// hour

DateBuilder atHourOfDay(int atHour)
DateBuilder atHourMinuteAndSecond(int atHour, int atMinute, int atSecond)

// minute

DateBuilder atMinute(int atMinute)
DateBuilder atHourMinuteAndSecond(int atHour, int atMinute, int atSecond)

// second

DateBuilder atSecond(int atSecond)
DateBuilder atHourMinuteAndSecond(int atHour, int atMinute, int atSecond)

Listing 13. Listing 13. DateBuilder static utility methods
static DateBuilder newDate()
static DateBuilder newDateInTimezone(TimeZone tz)
static DateBuilder newDateInLocale(Locale lc)
static DateBuilder newDateInTimeZoneAndLocale(TimeZone tz, Locale lc)

static Date dateOf(int hour, int minute, int second)
static Date dateOf(int hour, int minute, int second, int dayOfMonth, int month)
static Date dateOf(int hour, int minute, int second, int dayOfMonth, int month, int year)
static Date evenHourDate(Date date)
static Date evenHourDateAfterNow()
static Date evenHourDateBefore(Date date)
static Date evenMinuteDate(Date date)
static Date evenMinuteDateAfterNow()
static Date evenMinuteDateBefore(Date date)
static Date evenSecondDate(Date date)
static Date evenSecondDateAfterNow()
static Date evenSecondDateBefore(Date date)
static Date futureDate(int interval, IntervalUnit unit)
static Date nextGivenMinuteDate(Date date, int minuteBase)
static Date nextGivenSecondDate(Date date, int secondBase)
static Date todayAt(int hour, int minute, int second)
static Date tomorrowAt(int hour, int minute, int second)
static Date translateTime(Date date, TimeZone src, TimeZone dest)

BuilderFactory

Quartz added trigger builder classes in 2.0 that have chainable methods (the mutator methods return this﻿) and provide a fluent and intuitive approach to creating triggers. In practice I found several methods to be a bit verbose, and thought it would be better in many cases to combine all of the builders so there would be a single starting point for all types of triggers. The plugin’s BuilderFactory﻿ (an awkward name, but certainly better than BuilderBuilder﻿ …​) provides this.

If you’re building triggers inside a SchwartzJob﻿ class the best way to initialize a BuilderFactory﻿ is with one of the two builder()﻿ methods since they set the job name and group, and optionally the trigger name for you:

Trigger trigger = builder('mytrigger').some().builder().methods().build()

You can also start with just the constructor and do everything explicitly, e.g.

Trigger trigger = new BuilderFactory().some().builder().methods().build()

All of the options in the various triggers are configurable as properties or chainable methods, so the standard Groovy Map constructor is an option also, either explicitly followed by a call to the build()﻿ instance method, or in one step using the static build(Map)﻿ method, e.g.

Trigger trigger = BuilderFactory.build(
 name: triggerName, group: triggerGroup, jobName: jobName, jobGroup: jobGroup,
 startAt: start, endAt: end, cronSchedule: cron, timeZone: timeZone,
 description: description, jobDataMap: jobDataMap, calendarName: calendarName,
 misfireHandling: IgnoreMisfires, priority: priority)

which is equivalent to

Trigger trigger = builder()
 .name(triggerName)
 .group(triggerGroup)
 .jobName(jobName)
 .jobGroup(jobGroup)
 .startAt(start)
 .endAt(end)
 .cronSchedule(cron)
 .timeZone(timeZone)
 .description(description)
 .jobDataMap(jobDataMap)
 .calendarName(calendarName)
 .priority(priority)
 .misfireHandling(IgnoreMisfires)
 .build()

Because all trigger properties and methods are available when using BuilderFactory﻿, it is possible to inadvertently set properties or call methods that apply to two or more trigger types; this is invalid and when you call the build()﻿ method, the code that validates the configured properties and determines which type of trigger to build will detect the problem and throw an exception with detailed information about what values were applicable for the different trigger types to help you to fix the mistakes.

The following tables summarize the various methods and corresponding chainable methods that are available for the different trigger types, and the common non-schedule-related methods applicable to all trigger types.

Table 6. CalendarIntervalTrigger schedule properties and methods

	Property﻿
	Method﻿

	Integer interval﻿

	BuilderFactory interval(int _)﻿

	Integer intervalInDays﻿

	BuilderFactory intervalInDays(int _)﻿

	Integer intervalInHours﻿

	BuilderFactory intervalInHours(int _)﻿

	Integer intervalInMinutes﻿

	BuilderFactory intervalInMinutes(int _)﻿

	Integer intervalInMonths﻿

	BuilderFactory intervalInMonths(int _)﻿

	Integer intervalInSeconds﻿

	BuilderFactory intervalInSeconds(int _)﻿

	Integer intervalInWeeks﻿

	BuilderFactory intervalInWeeks(int _)﻿

	Integer intervalInYears﻿

	BuilderFactory intervalInYears(int _)﻿

	MisfireHandling misfireHandling﻿

	BuilderFactory misfireHandling(MisfireHandling _)﻿

	Boolean preserveHour﻿

	BuilderFactory preserveHour(boolean _ = true)﻿

	Boolean skipDay﻿

	BuilderFactory skipDay(boolean _ = true)﻿

	TimeZone timeZone﻿

	BuilderFactory timeZone(TimeZone _)﻿

	IntervalUnit unit﻿

	BuilderFactory unit(IntervalUnit _)﻿

Table 7. CronTrigger schedule properties and methods

	Property﻿
	Method﻿

	CronExpression cronExpression﻿

	BuilderFactory cronExpression(CronExpression _)﻿

	String cronSchedule﻿

	BuilderFactory cronSchedule(String _)﻿

	String cronScheduleNonvalidated﻿

	BuilderFactory cronScheduleNonvalidated(String _)﻿

	Integer day﻿

	BuilderFactory day(int _)﻿

	def days﻿

	BuilderFactory days(_)﻿ (also void setDays(daysOfWeek)﻿ which accepts a single int, an Integer[]﻿ array, or Collection﻿ and converts to Integer[]﻿, and Integer[] getDays()﻿)

	Integer hour﻿

	BuilderFactory hour(int _)﻿

	HourAndMinuteMode hourAndMinuteMode﻿

	BuilderFactory hourAndMinuteMode(HourAndMinuteMode _)﻿

	Integer minute﻿

	BuilderFactory minute(int _)﻿

	MisfireHandling misfireHandling﻿

	BuilderFactory misfireHandling(MisfireHandling _)﻿

	TimeZone timeZone﻿

	BuilderFactory timeZone(TimeZone _)﻿

Table 8. DailyTimeIntervalTrigger schedule properties and methods

	Property﻿
	Method﻿

	TimeOfDay dailyEnd﻿

	BuilderFactory dailyEnd(TimeOfDay _)﻿

	Integer dailyEndAfterCount﻿

	BuilderFactory dailyEndAfterCount(int _)﻿

	TimeOfDay dailyStart﻿

	BuilderFactory dailyStart(TimeOfDay _)﻿

	def days﻿

	BuilderFactory days(_)﻿ (also void setDays(daysOfWeek)﻿ which accepts a single int, an Integer[]﻿ array, or Collection﻿ and converts to Integer[]﻿, and Integer[] getDays()﻿)

	Boolean everyDay﻿

	BuilderFactory everyDay(boolean _ = true)﻿

	Integer interval﻿

	BuilderFactory interval(int _)﻿

	Integer intervalInHours﻿

	BuilderFactory intervalInHours(int _)﻿

	Integer intervalInMinutes﻿

	BuilderFactory intervalInMinutes(int _)﻿

	Integer intervalInSeconds﻿

	BuilderFactory intervalInSeconds(int _)﻿

	MisfireHandling misfireHandling﻿

	BuilderFactory misfireHandling(MisfireHandling _)﻿

	Boolean mondayThroughFriday﻿

	BuilderFactory mondayThroughFriday(boolean _ = true)﻿

	Integer repeatCount﻿

	BuilderFactory repeatCount(int _)﻿

	Boolean saturdayAndSunday﻿

	BuilderFactory saturdayAndSunday(boolean _ = true)﻿

	IntervalUnit unit﻿

	BuilderFactory unit(IntervalUnit _)﻿

Table 9. SimpleTrigger properties and methods

	Property﻿
	Method﻿

	Integer hours﻿

	BuilderFactory hours(int _)﻿

	Integer intervalInHours﻿

	BuilderFactory intervalInHours(int _)﻿

	Long intervalInMillis﻿

	BuilderFactory intervalInMillis(long _)﻿

	Integer intervalInMinutes﻿

	BuilderFactory intervalInMinutes(int _)﻿

	Integer intervalInSeconds﻿

	BuilderFactory intervalInSeconds(int _)﻿

	Integer minutes﻿

	BuilderFactory minutes(int _)﻿

	MisfireHandling misfireHandling﻿

	BuilderFactory misfireHandling(MisfireHandling _)﻿

	Integer repeatCount﻿

	BuilderFactory repeatCount(int _)﻿

	Boolean repeatForever﻿

	BuilderFactory repeatForever(boolean _ = true)﻿

	RepeatMode repeatMode﻿

	BuilderFactory repeatMode(RepeatMode _)﻿

	Integer seconds﻿

	BuilderFactory seconds(int _)﻿

	Integer totalCount﻿

	BuilderFactory totalCount(int _)﻿

Table 10. Trigger properties and methods

	Property﻿
	Method﻿

	String calendarName﻿

	BuilderFactory calendarName(String _)﻿

	String description﻿

	BuilderFactory description(String _)﻿

	Date endAt﻿

	BuilderFactory endAt(Date _)﻿

	String group﻿

	BuilderFactory group(String _)﻿

	SchwartzJob job﻿

	BuilderFactory job(SchwartzJob _)﻿

	Map<String, ?> jobData﻿

	BuilderFactory jobData(Map<String, ?> _)﻿

	JobDataMap jobDataMap﻿

	BuilderFactory jobDataMap(JobDataMap _)﻿

	JobDetail jobDetail﻿

	BuilderFactory jobDetail(JobDetail _)﻿

	String jobGroup﻿

	BuilderFactory jobGroup(String _)﻿

	JobKey jobKey﻿

	BuilderFactory jobKey(JobKey _)﻿

	String jobName﻿

	BuilderFactory jobName(String _)﻿

	TriggerKey key﻿

	BuilderFactory key(TriggerKey _)﻿

	String name﻿

	BuilderFactory name(String _)﻿

	Integer priority﻿

	BuilderFactory priority(int _)﻿

	Date startAt﻿

	BuilderFactory startAt(Date _)﻿

Table 11. Utility methods

	Method﻿
	Description﻿

	BuilderFactory startDelay(int millis)﻿

	Chainable builder method that sets the start time of the trigger as the current time plus the specified milliseconds

	void setStartDelay(int millis)﻿

	Traditional setter method that sets the start time of the trigger as the current time plus the specified milliseconds

	BuilderFactory startNow()﻿

	Essentially a no-op since the default start date is new Date()﻿.

	BuilderFactory noRepeat()﻿

	Resets the repeat count to zero (the default is to repeat forever)

 Burt Beckwith

 LISTENERS

The plugin includes a few implementations of the Quartz listener interfaces and support for others. The listeners are all enabled by default but can be disabled (and additional listeners can be enabled) in the [configuration]﻿.

com.agileorbit.schwartz.listener.LoggingJobListener

Implements JobListener﻿ and logs current state information at the debug level for each method.

com.agileorbit.schwartz.listener.LoggingTriggerListener

Implements TriggerListener﻿ and logs current state information at the debug level for each method.

com.agileorbit.schwartz.listener.LoggingSchedulerListener

Implements SchedulerListener﻿ and logs method parameter data at the debug level for each method.

com.agileorbit.schwartz.listener.ExceptionPrinterJobListener

Implements JobListener﻿ and logs the JobKey﻿ and the exception stacktrace if an exception occurs while a job is executing.

com.agileorbit.schwartz.listener.SessionBinderJobListener

Implements JobListener﻿ and works like the web-tier open-session-in-view pattern, binding a GORM session before your job starts and closing it when it finishes. Will be active for each SchwartzJob﻿ only if the job class returns true﻿ from its getSessionRequired()﻿ method (defaults to true﻿) defined in the trait.

com.agileorbit.schwartz.listener.QuartzListeners

Aggregate interface that implements JobListener﻿, TriggerListener﻿, and SchedulerListener﻿. com.agileorbit.schwartz.listener.QuartzListenersAdaptor﻿ is an adaptor class that implements QuartzListeners﻿ and delegates each method to the corresponding method in an instance of JobListenerSupport﻿, SchedulerListenerSupport﻿, or TriggerListenerSupport﻿.

 Burt Beckwith

 QUARTZSERVICE

The plugin includes a utility service, quartzService﻿, that it uses internally for much of the interaction with the Quartz Scheduler﻿ and other tasks, and you can also use it in your application. Add a dependency injection for the service like for any Spring bean (QuartzService quartzService﻿ or def quartzService﻿). The service’s methods are described below.

	Method﻿
	Description﻿

	init﻿

	Called from doWithApplicationContext()﻿ at startup; should not be called from application code.

	validateTables﻿

	Checks that the required tables exist if JDBC storage is enabled.

	validateExistingJobs﻿

	Checks that all JobDetails can be retrieved to catch problems early such as deleted/moved/renamed Job classes.

	scheduleJobs﻿

	Registers a JobDetail﻿ and schedules triggers for each Spring bean that implements SchwartzJob﻿; should not be called from application code.

	scheduleJob﻿

	Builds and registers a JobDetail﻿ with values from a SchwartzJob﻿ instance and and schedules the job’s triggers.

	updateJobDetail﻿

	Replaces data for an existing JobDetail﻿ with new values.

	getStoredJobDetail﻿

	Retrieves the JobDetail﻿ stored for a job if one exists.

	triggerJob﻿

	Triggers a job to run immediately.

	getTriggers﻿

	Retrieve the triggers scheduled for a a job.

	scheduleTrigger﻿

	Register a Trigger﻿ in the Scheduler﻿.

	purgeTables﻿

	Deletes data from all database tables; called at startup if purgeQuartzTablesOnStartup﻿ is true﻿ but can be called on-demand also.

	clearData﻿

	Uses standard Quartz functionality to clear job and trigger data (all tables except QRTZ_FIRED_TRIGGERS, QRTZ_LOCKS, and QRTZ_SCHEDULER_STATE).

	tableNamePrefix﻿

	Looks up the database table name prefix if set in the config and returns the default (“QRTZ_”) if not overridden.

 Burt Beckwith

 TUTORIALS

Basic Tutorial

Create your Grails application.

$ grails create-app schwartztest
$ cd schwartztest

“Install” the plugin by adding it to build.gradle

Add a dependency for the plugin by adding it to the dependencies﻿ block in build.gradle:

buildscript {
 repositories {
 ...
 }
 dependencies {
 classpath "org.grails:grails-gradle-plugin:$grailsVersion"
 ...
 classpath 'com.agileorbit:schwartz:1.0.1'
 }
}

dependencies {
 ...
 compile 'com.agileorbit:schwartz:1.0.1'
 ...
}

Create a job that’s a transactional service

Next we’ll create some job classes. First, we’ll create a job that’s a transactional service:

$ grails create-job Skroob

Note that even though Schwartz jobs aren’t Grails artifacts and there is no enforced naming convention, the [create-job]﻿ script adds the “Job” suffix for you if the specified name doesn’t end in “Job”, and “JobService” when creating jobs in grails-app/services﻿, but this is not a requirement (other than the general Grails requirement that service names end in “Service”), just a convenience.

The script will create the class under grails-app/services﻿ in the specified package, or in the default package if none is specified (as in this case), with commented-out example triggers that aren’t shown here:

package schwartztest

import com.agileorbit.schwartz.SchwartzJob
import grails.transaction.Transactional
import groovy.transform.CompileStatic
import groovy.util.logging.Slf4j
import org.quartz.JobExecutionContext
import org.quartz.JobExecutionException

@CompileStatic
@Slf4j
class SkroobJobService implements SchwartzJob {

 @Transactional
 void execute(JobExecutionContext context) throws JobExecutionException {
 }

 void buildTriggers() {
 }
}

Edit the file to add a simple trigger that fires every second, and a println in the execute﻿ method to verify that it’s working:

package schwartztest

import com.agileorbit.schwartz.SchwartzJob
import grails.transaction.Transactional
import groovy.transform.CompileStatic
import groovy.util.logging.Slf4j
import org.quartz.JobExecutionContext
import org.quartz.JobExecutionException

@CompileStatic
@Slf4j
class SkroobJobService implements SchwartzJob {

 @Transactional
 void execute(JobExecutionContext context) throws JobExecutionException {
 println "$context.trigger.key/$context.jobDetail.key at ${new Date()}"
 }

 void buildTriggers() {
 triggers << factory('Skroob_EverySecond').intervalInSeconds(1).build()
 }
}

Run the application to verify that the job is registered and that it fires every second.

Create a stateful job that’s a POGO

This is really two steps in one since a job can be stateful or stateless, and a service or defined in src/main/groovy﻿ as a POGO, but we’ll create one job to reduce the overall length of this tutorial.

Run this to create the job:

$ grails create-job DarkHelmet --pogo --stateful

which will be generated in src/main/groovy/schwartztest/DarkHelmetJob.groovy﻿ (shown here with comments removed):

package schwartztest

import com.agileorbit.schwartz.StatefulSchwartzJob
import groovy.transform.CompileStatic
import groovy.util.logging.Slf4j
import org.quartz.JobExecutionContext
import org.quartz.JobExecutionException
import org.springframework.stereotype.Component

@CompileStatic
@Component
@Slf4j
class DarkHelmetJob implements StatefulSchwartzJob {

 void execute(JobExecutionContext context) throws JobExecutionException {
 }

 void buildTriggers() {
 }
}

As before, add a trigger in buildTriggers()﻿ and a println statement in execute()﻿

package schwartztest

import com.agileorbit.schwartz.StatefulSchwartzJob
import groovy.transform.CompileStatic
import groovy.util.logging.Slf4j
import org.quartz.JobExecutionContext
import org.quartz.JobExecutionException
import org.springframework.stereotype.Component

@CompileStatic
@Component
@Slf4j
class DarkHelmetJob implements StatefulSchwartzJob {

 void execute(JobExecutionContext context) throws JobExecutionException {
 println "$context.trigger.key/$context.jobDetail.key at ${new Date()}"
 }

 void buildTriggers() {
 triggers << factory('DarkHelmet_Every2Second').intervalInSeconds(2).build()
 }
}

Because this is not a service, it won’t be automatically discovered by the plugin and won’t be registered in Quartz, but there are a few options. Note that the class is annotated with the Spring Component﻿ annotation; this is not required and can be removed, but if you’ve enabled component scanning, e.g. by annotating your Application﻿ class:

package schwartztest

import grails.boot.GrailsApp
import grails.boot.config.GrailsAutoConfiguration
import groovy.transform.CompileStatic
import org.springframework.context.annotation.ComponentScan

@CompileStatic
@ComponentScan('schwartztest')
class Application extends GrailsAutoConfiguration {
 static void main(String[] args) {
 GrailsApp.run this, args
 }
}

then your job class will be registered as a Spring bean and because it implements SchwartzJob﻿ it will be auto-registered in Quartz at startup.

If you prefer, you can register the job as a Spring bean in grails-app/conf/spring/resources.groovy﻿, e.g.

import schwartztest.DarkHelmetJob

beans = {
 darkHelmetJob(DarkHelmetJob) {
 quartzService = ref('quartzService')
 }
}

Create a non-bean job

There’s no requirement that jobs be registered as Spring beans, it’s just a convenience. You can manage job registration and scheduling entireley yourself if you prefer. Run the create-job﻿ script again to create a POGO job class:

$ grails create-job Barf --pogo

and add a println statement in execute()﻿ but don’t create any triggers, and delete the Component﻿ annotation:

package schwartztest

import com.agileorbit.schwartz.SchwartzJob
import groovy.transform.CompileStatic
import groovy.util.logging.Slf4j
import org.quartz.JobExecutionContext
import org.quartz.JobExecutionException

@CompileStatic
@Slf4j
class BarfJob implements SchwartzJob {

 void execute(JobExecutionContext context) throws JobExecutionException {
 println "$context.trigger.key/$context.jobDetail.key at ${new Date()}"
 }

 void buildTriggers() {
 }
}

Now you have several options. You could manually register the job yourself, e.g. in BootStrap﻿ (or later at runtime, e.g. in a service):

import com.agileorbit.schwartz.QuartzService
import org.quartz.SchedulerException
import schwartztest.BarfJob

class BootStrap {

 QuartzService quartzService

 def init = {
 BarfJob job = new BarfJob()
 try {
 quartzService.scheduleJob job
 }
 catch (SchedulerException e) {
 log.error e.message, e
 }
 }
}

or you could create a JobDetail﻿ and optionally some triggers and register the job using those (and you could do the same for other job classes that implement Job﻿ but not SchwartzJob﻿, even Java classes):

import com.agileorbit.schwartz.QuartzService
import org.quartz.JobDetail
import org.quartz.SchedulerException
import org.quartz.Trigger
import schwartztest.BarfJob

class BootStrap {

 QuartzService quartzService

 def init = {

 BarfJob job = new BarfJob()

 JobDetail jobDetail = job.jobBuilder().build()
 Collection<? extends Trigger> triggers = ...

 try {
 quartzService.scheduleJob jobDetail, triggers, false
 }
 catch (SchedulerException e) {
 log.error e.message, e
 }
 }
}

Once the job is registered, you can trigger the job to run immediately whenever you want:

import com.agileorbit.schwartz.QuartzService
import static org.quartz.JobKey.jobKey

class SomeService {

 QuartzService quartzService

 void someMethod() {
 quartzService.triggerJob jobKey('BarfJob')
 }
}

JDBC Job Storage Tutorial

There’s not much to do to change from in-memory job storage to database storage, but be sure to read the [jdbcJobStorage]﻿ section of the docs before starting this tutorial.

In this example MySQL is used but you can use any of the database types supported by Quartz. Very few details are database-specific, primarily just the initial database creation steps.

If you don’t already have a MySQL database to work with, run these commands in a MySQL client as the root user or another user with permission to create databases and grant permissions:

> create database quartz_jdbc_test;

> grant all on quartz_jdbc_test.* to quartztest@localhost identified by 'quartztest';

Configure the DataSource

Add a dependency in build.gradle﻿ for the JDBC driver for your database (be sure to use the latest version available):

dependencies {
 ...
 runtime 'mysql:mysql-connector-java:5.1.39'
 ...
}

and update application.groovy﻿ (or make the equivalent changes in application.yml﻿ if you haven’t converted it to Groovy syntax yet) to use the correct driver class, dialect, url, username, and password:

dataSource {
 ...
 dialect = org.hibernate.dialect.MySQL5InnoDBDialect
 driverClassName = 'com.mysql.jdbc.Driver'
 password = 'quartztest'
 url = 'jdbc:mysql://localhost/quartz_jdbc_test'
 username = 'quartztest'
 ...
}

Create the database tables

You’ll need to create the database tables that Quartz uses to store job and trigger information. As described in the [jdbcJobStorage]﻿ section there are three options, using one of the Quartz scripts from the full distribution, or using one of the plugin commands. Use whichever approach you prefer and apply the changelog or execute the SQL to create the tables.

If you’re using the database-migration plugin (or Liquibase directly), you should use the [create-jdbc-tables-changelog]﻿ command, e.g.

$ grails create-jdbc-tables-changelog grails-app/migrations/quartz_jdbc.groovy

Add the file to your main changelog file and run

$ grails dbm-update

The [create-jdbc-sql]﻿ command is similar but only has a dependency on Hibernate. Run the script to generate the SQL:

$ grails create-jdbc-sql quartz_jdbc.sql

and use the MySQL client or another tool to run the SQL statements and create the tables.

Enable database storage

Once the database tables are available, set the jdbcStore﻿ config property to true﻿:

quartz {
 jdbcStore = true
}

Since MySQL uses the default DriverDelegate﻿, it’s not required to specify the delegate class name, but if you’re using a database that has a custom implementation (e.g. PostgreSQL) then you would also set that, e.g.

import org.quartz.impl.jdbcjobstore.PostgreSQLDelegate

quartz {
 jdbcStore = true
 properties {
 jobStore {
 driverDelegateClass = PostgreSQLDelegate.name
 }
 }
}

Cluster Tutorial

Be sure to read the [clustering]﻿ section of the docs before starting this tutorial.

Configure database job storage

Database job storage is required before configuring a Quartz cluster, so configure that first using the JDBC Job Storage Tutorial﻿ (or by making the required changes in an existing application).

Enable clustering

Next, enable clustering by setting isClustered﻿ to true﻿ in the config, and set the instanceName﻿ property to define the name for the cluster. For now, also set the value for instanceId﻿ to “AUTO” to let Quartz assign a unique value for each server node:

quartz {
 jdbcStore = true
 properties {
 jobStore {
 isClustered = true
 }
 scheduler {
 instanceId = 'AUTO'
 instanceName = 'ClusterTutorial'
 }
 }
}

Start the app

Enable logging for the Quartz classes in logback.groovy﻿:

logger 'org.quartz', INFO

and start the app and you should see output similar to this:

INFO org.quartz.core.QuartzScheduler - Quartz Scheduler v.2.2.3 created.
INFO org.quartz.core.QuartzScheduler - Scheduler meta-data: Quartz Scheduler (v2.2.3) 'ClusterTutorial' with instanceId '...'
 Scheduler class: 'org.quartz.core.QuartzScheduler' - running locally.
 NOT STARTED.
 Currently in standby mode.
 Number of jobs executed: 0
 Using thread pool 'org.quartz.simpl.SimpleThreadPool' - with 10 threads.
 Using job-store 'org.springframework.scheduling.quartz.LocalDataSourceJobStore' - which supports persistence. and is clustered.
INFO org.quartz.core.QuartzScheduler - Scheduler ClusterTutorial_$_... started.

Create a simple job

Stop the app and create a simple job that we can use to verify that clustering is enabled and working:

$ grails create-job ClusterTest

package clustertest

import com.agileorbit.schwartz.SchwartzJob
import grails.transaction.Transactional
import groovy.transform.CompileStatic
import groovy.util.logging.Slf4j
import org.quartz.JobExecutionContext
import org.quartz.JobExecutionException

@CompileStatic
@Slf4j
class ClusterTestJobService implements SchwartzJob {

 @Transactional
 void execute(JobExecutionContext context) throws JobExecutionException {
 println "$context.trigger.key/$context.jobDetail.key at ${new Date()}"
 }

 void buildTriggers() {
 triggers << factory('ClusterTest_EverySecond').intervalInSeconds(1).build()
 }
}

Run two instance to check that clustering is configured

Start the app again and verify that the job fires and prints to the console every second:

$ grails run-app --port=8081

Open a second terminal and run a second instance of the app on another port and verify that the job runs in both instances, but that each time the trigger fires it only executes on one of the running instances:

$ grails run-app --port=8082

Quartz makes no guarantees about load distribution among cluster nodes and in general will tend to run jobs on the first instance they happen to run on, so you may not see any output in the second window. But if you stop the first server instance (either with a clean shutdown or more forcibly) then you will definitely see that the job starts firing on the second instance, possibly after a delay of a few seconds.

Change from automatic instance ids to explicitly set values

Edit application.groovy﻿ and remove the instanceId﻿ setting:

quartz {
 jdbcStore = true
 properties {
 jobStore {
 isClustered = true
 }
 scheduler {
 instanceName = 'ClusterTutorial'
 }
 }
}

and add this block to build.gradle﻿ to enable passing system properties from the commandline:

configure(bootRun) {
 systemProperties System.properties
}

Start the two instances again, but this time passing the cluster node id in addition to the server port:

$ grails -Dquartz.properties.scheduler.instanceId=node1 run-app --port=8081

and

$ grails -Dquartz.properties.scheduler.instanceId=node2 run-app --port=8082

and you should see from the logging output that clustering is enabled and that the specified node names are used instead of randomly assigned values, and that the work of running the sample job is split between the two instances.

 Burt Beckwith

 ADVANCED TOPICS

JDBC Job Storage

The default implementation of the Quartz JobStore﻿ is RAMJobStore﻿ which keeps everything in-memory at the server where the schedular is running. This works well when you only have one server but when you need to scale beyond one, or run multiple instances for high availability, it’s important to both spread the workload between the servers and to ensure that triggers only fire on one machine, and for that you need centralized storage. Using Quartz’s support for storage in a relational database is one good option, and Quartz also supports using Terracotta as the JobStore﻿.

The initial configuration to change from in-memory to a database is only a few steps, and there are many optional tuning and configuration options described in the documentation﻿.

One step when using traditional Quartz outside of Grails is deciding what transaction support to use; JobStoreTX﻿ manages transactions for Quartz table updates but cannot participate in your application’s transactions, or JobStoreCMT﻿ which uses the transaction support from the application server or framework and can update Quartz tables transactionally along with application table updates. You also would add connection and pool-management properties to the Quartz configuration to create a DataSource that Quartz uses for its queries.

Spring provides a third option with its LocalDataSourceJobStore﻿ implementation which uses the application’s DataSource (or one of them if there are multiple) and existing transaction support, which lets Quartz updates use the same transaction support as the rest of the application. This is the option used by the plugin, and to enable it you simply set the DataSource as a property of the SchedulerFactoryBean﻿ Spring bean. The plugin will do this for you if you set the quartz.jdbcStore﻿ config value to true﻿:

quartz {
 jdbcStore = true
}

By default it will use the dataSource﻿ Spring bean, and to use a different DataSource bean, set its name in the quartz.jdbcStoreDataSource﻿ property:

quartz {
 jdbcStore = true
 jdbcStoreDataSource = 'someOtherDataSource'
}

If you use this approach, do not configure the org.quartz.jobStore.class﻿ Quartz property or any values for a connection pool as described in the Quartz JDBC documentation - the plugin and the Spring support classes make the appropriate config changes when creating the Scheduler and its support objects.

Database tables

You’ll need to create the database tables that Quartz uses to store job and trigger information, and there are a few different options available. The full Quartz distribution (available to download from the Quartz website﻿) contains files with SQL statements for many popular databases. In addition, the plugin includes two commands that will create a Liquibase changelog or the equivalent SQL for you. Use whichever of these approaches you prefer and apply the changelog or execute the SQL to create the tables.

If you’re using the database-migration plugin (or Liquibase directly), you should use the [create-jdbc-tables-changelog]﻿ command, e.g.

$ grails create-jdbc-tables-changelog grails-app/migrations/quartz_jdbc.groovy

Add the file to your main changelog file and run

$ grails dbm-update

The [create-jdbc-sql]﻿ command is similar but only has a dependency on Hibernate. Run the script to generate the SQL:

$ grails create-jdbc-sql quartz_jdbc.sql

and use the client for you database or another tool to run the SQL statements and create the tables.

DriverDelegate

Quartz needs to know which DriverDelegate﻿ implementation that the JobStore﻿ will use to perform the actual queries and updates. This is similar to the Dialect﻿ concept in Hibernate, and allows the core functionality to focus on the logic around job management and delegates database-specific JDBC work to a specialized helper class. Some databases use the default implementation, StdJDBCDelegate﻿, but there are custom implementations for databases that require different logic for various calls. The following table summarizes which class to use for several popular databases but check with the online documentation to be sure to select the correct type for the database you’re using:

	DriverDelegate Class﻿
	Database(s)﻿

	StdJDBCDelegate﻿

	H2, Informix, MySQL

	DB2v6Delegate﻿

	DB2 6.x

	DB2v7Delegate﻿

	DB2 7.x

	DB2v8Delegate﻿

	DB2 8.x

	MSSQLDelegate﻿

	SQL Server

	OracleDelegate﻿

	Oracle

	PostgreSQLDelegate﻿

	PostgreSQL

The default is StdJDBCDelegate﻿ so if your database uses that you don’t need to make any changes. If you’re using one of the databases that has a custom driver delegate implementation, specify the class name in the config in the driverDelegateClass﻿ setting, e.g. for PostgreSQL you would use

import org.quartz.impl.jdbcjobstore.PostgreSQLDelegate

quartz {
 jdbcStore = true
 properties {
 jobStore {
 driverDelegateClass = PostgreSQLDelegate.name
 }
 }
}

There are several other JDBC-related config options, so familiarize yourself with those in case they can be of use, but the defaults should work well in general for most of the properties. The properties all start with “org.quartz.jobStore.”, e.g. “org.quartz.jobStore.tablePrefix”, “org.quartz.jobStore.txIsolationLevelSerializable”, etc. so they would be set in the “quartz.properties.jobStore” config block, e.g.

quartz {
 ...
 properties {
 jobStore {
 acquireTriggersWithinLock = ...
 clusterCheckinInterval = ...
 ...
 }
 }
}

To summarize, the general steps to change job storage from in-memory to JDBC are:

	
execute the SQL statements (from one of the Quartz example files or using one of the plugin commands) to create the tables and indexes

	
set quartz.jdbcStore﻿ to true﻿ in the config

	
set quartz.driverDelegateClass﻿ to the name of the DriverDelegate﻿ used by your database if it’s not the default

	
optionally specify a non-default DataSource bean name for quartz.jdbcStoreDataSource﻿

	
optionally configure additional properties

Clustering

Clustering is a moderately complex topic and you should read the Quartz clustering documentation﻿ before trying to implement it, but there are only a few required steps to get basic clustering working.

The first is to configure storage of job data in a database, so refer to the previous section for those steps.

In addition, you must enable clustering with the isClustered﻿ config setting, and choose a shared cluster name by setting the instanceName﻿ config setting, e.g.

quartz {
 jdbcStore = true
 properties {
 jobStore {
 isClustered = true
 }
 scheduler {
 instanceName = 'cluster_tutorial'
 }
 }
}

The remaining required config setting is a unique instance id for each node in the cluster, using the instanceId﻿ config setting. You can let Quartz assign a unique name for each node automatically by using the value “AUTO”, e.g.

quartz {
 jdbcStore = true
 properties {
 jobStore {
 isClustered = true
 }
 scheduler {
 instanceName = 'cluster_tutorial'
 instanceId = 'AUTO'
 }
 }
}

but if you want to choose the values yourself you would omit that setting from application.groovy﻿ and set the value externally for each server instance.

That’s all that’s required, but refer to the Quartz docs for information about the various optional config settings that are available, and try out the [clusterTutorial]﻿ to see clustering in action.

To summarize, the general steps to change job storage from in-memory to JDBC are:

	
configure database job storage

	
set quartz.properties.jobStore.isClustered﻿ to true﻿ in the config

	
set quartz.properties.scheduler.instanceName﻿ to the cluster name in the config

	
set quartz.properties.scheduler.instanceId﻿ to ‘AUTO’ in the config to use auto-generated unique node names, or specify the value externally for each node

	
optionally configure additional properties

 Burt Beckwith

 SCRIPTS AND COMMANDS

The plugin must be in the Gradle classpath in order for the scripts and commands to be available from the commandline. Be sure to include a “classpath” element in the dependencies﻿ section of the buildscript﻿ block in your application’s build.gradle﻿ to make the script available to Gradle, in addition to adding a regular “compile” element in the main dependencies﻿ block:

buildscript {
 repositories {
 ...
 }
 dependencies {
 classpath "org.grails:grails-gradle-plugin:$grailsVersion"
 ...
 classpath 'com.agileorbit:schwartz:1.0.1'
 }
}

dependencies {
 ...
 compile 'com.agileorbit:schwartz:1.0.1'
 ...
}

create-job

Purpose. Creates a new Quartz Job class. The general format is:

$ grails create-job JOB_CLASS_NAME [--pogo] [--stateful]

$ grails create-job report

$ grails create-job com.mycompany.foo.priceUpdate --pogo

$ grails create-job com.mycompany.foo.priceUpdate --stateful

$ grails create-job com.mycompany.foo.priceUpdate --pogo --stateful

Description. Creates a class with the specified class name and package that implements either SchwartzJob﻿ or StatefulSchwartzJob﻿. By default it will create a stateless class but will make it stateful if you include the --pogo﻿ flag.

By default the class will be generated as a Grails Service under grails-app/services﻿, but if you include the --pogo﻿ flag the class will be generated under src/main/groovy﻿. The plugin doesn’t automatically register your job classes as Spring beans, but often job classes need to access the database or call services and other Spring beans. By making your class a Grails Service you get support for dependency injection and can easily make your job class transactional with the Transactional﻿ annotation. All beans that implement one of the traits will be auto-discovered at startup by QuartzService﻿ and a JobDetails﻿ and any configured Trigger﻿ instances will be registered in the Quartz Scheduler﻿ if they are not already.

create-jdbc-tables-changelog

Purpose. Creates a Liquibase changelog (or the SQL generated from a changelog) to create Quartz database tables. The general format is:

$ grails create-jdbc-tables-changelog [FILENAME]

$ grails create-jdbc-tables-changelog grails-app/migrations/quartz_jdbc.groovy

$ grails create-jdbc-tables-changelog grails-app/migrations/quartz_jdbc.xml

$ grails create-jdbc-tables-changelog quartz_jdbc.sql

Description. Creates in-memory Liquibase model objects and builds a changelog from those in Groovy or XML format (or any format supported by Liquibase). Will optionally generate the resulting SQL from the changelog. The format is determined by the extension of the file you specify; if it is “groovy”, “xml”, or any of the file formats supported by Liquibase, a changelog file will be created. Unlike the database-migration plugin the file is not written relative to the grails-app/migrations﻿ folder, it’s written relative to the application root directory. If the extension of the file is “sql”, a changelog will be generated but it will be used to by Liquibase to generate the SQL that would be created for the changelog and that SQL is written to the output file.

The liquibase-core jar or the database-migration plugin must be in the classpath to use this command.

create-jdbc-sql

Purpose. Uses Hibernate to generate SQL to create Quartz database tables. The general format is:

$ grails create-jdbc-sql [FILENAME]

$ grails create-jdbc-sql quartz_jdbc.sql

Description. Creates in-memory Hibernate model objects and returns the SQL generated from those; this is similar to the process used by the schema-export script. The hibernate-core jar or the hibernate plugin must be in the classpath to use this command.

OEBPS/nav.xhtml

Schwartz Plugin - Reference Documentation

Table of Contents

		Introduction to the Schwartz Plugin

		Usage

		Configuration

		Comparison with the Quartz Plugin

		Triggers

		Listeners

		QuartzService

		Tutorials

		Advanced Topics

		Scripts and Commands

OEBPS/jacket/cover.png
Schwartz Plugin

Reference Documentation

OEBPS/20120815-145326.jpg
-NEVER UNDERESTIMATE THE

. POWER OF - THE

OEBPS/avatars/default.jpg

OEBPS/headshots/default.jpg

